
Maximum Likelihood Optimization via Parallel

Estimating Gradient Ascent

Yining Wang
Warrington College of Business, University of Florida, Gainesville, FL 32601, USA

Quanquan Liu
Department of Economics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Global optimization without access to gradient information is a central task to many econometric applica-

tions as the tool to obtain maximum likelihood estimators for very complicated likelihood functions. The

estimating gradient descent framework is particularly popular, which uses local functional evaluation to

build gradient estimates and perform gradient descent from multiple initial points. In this work, we study

the problem of coordination between the multiple ”threads” of estimating gradient descent in order to pause

or terminate unpromising threads early. The high-level idea is to make predictions, either conservative or

aggressive, on the potential progress of each estimating gradient descent threads and to compare them with

the progress on other threads. We also test our proposed methodology on both synthetic data and real airline

pricing data, and compare with competitive methods including the genetic algorithm and the pattern search

algorithm. The numerical results show the effectiveness and efficiency of our proposed approach.

1. Introduction

Maximum-likelihood (ML) estimation is the workhorse for a wide range of inferring tasks of econo-

metric modeling. Mathematically, given an econometrical model p(x;θ) with unknown parameter

of interest θ ∈ Θ ⊆ Rd and collected data sample {xi}Ni=1, the ML estimation problem can be

formulated as

max
θ∈Θ

1

N

N∑
i=1

log p(xi;θ). (1)

In the rest of this paper, we also abbreviate Fi(θ) := log p(xi;θ) and F (θ) := 1
N

∑N

i=1Fi(θ). The

optimization question of Eq. (1) is then equivalent to maxθ∈ΘF (θ).

The primary focus of this paper is on the computation of approximate solutions of the ML

estimates (1) under challenging scenarios when the underlying model p(·;θ) is very complicated

and has several undesirable properties. Some important challenges include but are not limited to:

1. Non-concavity and non-unimodality of log-likelihood: the log-likelihood function

log p(xi; ·) might not be concave or even uni-modal with respect to the unknown parameter θ,

1



Wang, Liu: Parallel Estimating Gradient Ascent 2

making “local search” type methods such as mountain-climbing or gradient ascent difficult to find

global optima of Eq. (1). Instead, it is very likely that these methods would stuck in local minima

or saddle points;

2. Inaccessible first-order information: many optimization methods, such as gradient

ascent or Newton’s method, requires access to first-order or even second-order derivatives

∇θ log p(xi;θ),∇2
θ log p(xi;θ). Unfortunately, for many complicated econometric models, even if such

derivatives exist, they still cannot be easily computed in closed forms. This prevents straightforward

adoptions of famous continuous optimization algorithms to solve Eq. (1);

3. Noisy zeroth-order evaluation: in some scenarios, even the log-likelihood function

log p(xi;θ) itself cannot be evaluated or computed without error, given data xi and a hypothet-

ical parameter θ. For example, in econometric models involving game theoretical process with

unknown parameters, the computation of log p(xi;θ) requires multiple Monte-Carlo samples and

cannot achieve arbitrary levels of accuracy;

4. Curse of dimensionality for multiple parameters: while nonparametric estimation of

the log-likelihood function naturally leads to an approximate optimization algorithm for Eq. (1),

such an approach suffers from the curse of dimensionality when there are more than one parameters

(i.e., d> 1). Even when d is moderately large (e.g., d∈ [5,10]), estimating the entire log-likelihood

function could already lead to unacceptable level of computations.

In this paper, we propose an algorithm framework which we call “parallel estimating gradient

ascent”. Our algorithm has the following properties:

(a) Parallelism: the algorithm runs in parallel several computing threads simultaneously, with

vastly different initial points. This partially avoids the problem of being stuck in local optima/saddle

points, as the different computing threads could well lead/converge to different local minima;

(b) Gradient estimation: our method estimates the first-order derivative of the log-likelihood

function only with access to noisy evaluation of log p(xi;θ), making the proposed method applicable

to the widest range of econometric models;

(c) Coordination of computing threads: instead of running all parallel computing threads

with the same pace, we design “selection rules” and “stopping rules” to carefully coordinate the

different computing threads, so that promising computing threads are devoted with more com-

puting resource and unpromising threads are terminated early without wasting more computing

time.

The rest of this paper is organized as follows: In Sec. 2 we give accounts to related works.

The description of our proposed algorithm, as well as its several components and convergence

guarantees, are given in Sec. 3.



Wang, Liu: Parallel Estimating Gradient Ascent 3

2. Related works

The idea of using iterative methods to solve stochastic optimization questions without first-order

information is a well-studied topic in the literature of mathematical optimization, machine learning

and computational statistics. The estimating gradient descent/ascent originates from the works of

Kiefer & Wolfowitz (1952), Blum (1954), which was later studied and explored in (Nemirovsky

& Yudin 1983, Flaxman et al. 2005, Besbes et al. 2015, Agarwal et al. 2010, Shamir 2017). Our

proposed approach also resembles “zeroth-order trust region” algorithms, studied in the works of

Bandeira et al. (2014), Billups et al. (2013), Spall (1992), Powell (2003), Conn et al. (2009), Chen

et al. (2018). The majority of this line of work assumes the objective function to be optimized

is convex (or concave, for maximization problems). An exception is the work of Ghadimi & Lan

(2013), which considered non-convex objectives and studied how fast iterative methods converge

to stationary points of the said objectives.

Apart from iterative or estimating gradient type methods, many other heuristic algorithms are

also well-known for such global optimization questions considered in this paper. Examples include

the genetic algorithm (Koza 1997, Whitley 1994), simulated annealing (Van Laarhoven & Aarts

1987), pattern search (Torczon 1997, Lewis & Torczon 1999), as well as modern approaches such as

Bayesian optimization (Snoek et al. 2012) and hierarchical optimistic optimization (Bubeck et al.

2011, 2009).

The idea of running several computing threads coordinating them appropriately has also been

explored in (Agarwal et al. 2016) in which bandit optimization problems are solved by running

multiple candidate algorithms in parallel, and in (Lykouris et al. 2018) to solve multi-armed bandit

problems subject to an unknown amount of adversarial corruption.

3. Algorithm description

The pseudo-code description of the proposed algorithm framework is given in Algorithm 1. The

algorithm consists of three major components: ThreadCoordination, GradientEstimation

and ThreadStopping, which we describe in further details below and in subsequent sections:

- ThreadCoordination: this component aims at the selection (at iteration t) of an active

thread j ∈ At, where At is the subset of all active threads at time t (see also the description of

ThreadStopping for the interpretation and construction of active subsets). While the uniform

distribution U(At) is the most widely used (which spreads the computing resources evenly among

all remaining active threads), other distributions could be developed that favor more “promising”

threads. Further details and discussion are given in Sec. 3.1.



Wang, Liu: Parallel Estimating Gradient Ascent 4

Algorithm 1 The meta-algorithm framework.

1: Let θ̂
(1)
0 , θ̂

(2)
0 , · · · , θ̂(J)

0 be the initial parameter estimates of J computing threads; initialize also

J = {1,2, · · · , J} as the set of active threads;

2: for τ = 0,1,2, · · · do

3: Select jτ ∈J using the ThreadCoordination component;

4: Compute gτ = ∇̂θF (θ̂(jτ )
τ ) using the GradientEstimation component;

5: Perform projected ascent step for thread jτ : θ̂
(jτ )
τ+1 =PΘ(θ̂(jτ )

τ − ητ∇̂θF (θ̂(jτ )
τ )), where ητ is a

certain step size and PG(·) = arg minθ∈Θ ‖ ·−θ‖2;

6: Eliminate threads in J using the ThreadStopping component;

7: end for

- GradientEstimation: this component aims at the (approximate) computation of the first-

order derivative ∇θF (θ) using only noisy evaluations of F (θ + δ), where δ ∈ Rd is a small d-

dimensional perturbation vector. The computation is enabled by first-order Taylor expansions of

the objective function F centered at θ. Further details and discussion are given in Sec. 3.2.

- ThreadStopping: this component identifies unpromising threads which are not possible to

lead to or converge to good solutions. Such unpromising threads are identified through comparison

with the results from other threads, and are subsequently removed from consideration in future

iterations. The subset At is defined as the set consisting of all active threads at iteration t, which

forms the support of the thread distribution used in the ThreadCoordination component.

Further details and discussion are given in Sec. 3.3.

3.1. The ThreadCoordination component

The ThreadCoordination component, as suggested by its name, determines (potentially ran-

domly) at each time stamp t the particular computing thread j to be pursued for the next iteration.

For clarity, we assume the algorithm is currently at time t (i.e., a total number of t observations

have already been collected), and thread j ∈ [J ] is at parameter estimate θ̂
(j)
t . We also use Tj,t(∆t) to

denote the time stamps for the previous ∆t times thread j is selected, up to time stamp t. We shall

also assume that t is not too small. (When t is very small, meaning that the optimization algorithm

just starts, there is very little information regarding the performance of each computing threads

and hence the threads to pursue should be selected uniformly at random from all J threads.) We

use the following three aspects to decide on which computing thread is to be pursued next:

1. Current performance: the current performance of each computing thread is of the utmost

importance, since a thread that already performs well (i.e., attaining parameter estimates with



Wang, Liu: Parallel Estimating Gradient Ascent 5

good objective values) is likely to further push the performance of the entire algorithm/system.

For a particular thread j, its current performance can be estimated as the average objective values

over the last ∆t time stamps at which thread j is selected, or more specifically

CP(j, t) :=
1

∆t

∑
τ∈Tj,t(∆t)

F̂ (θ̂(j)
τ );

2. Estimated progress: a thread that can progress fast (i.e., rapidly increasing the objective value

of the parameter estimates) should be pursued more frequently since they will likely deliver fast

progress for the overall algorithm/system performance as well. The estimated progress of thread j

can be obtained by comparing the its performance for the previous ∆t and 2∆t time stamps during

which thread j is selected, or more specifically

EP(j, t) :=
1

∆t

∑
τ∈Tj,t(∆t)

F̂ (θ̂(j)
τ )− 1

∆t

∑
τ∈Tj,t(2∆t)\Tj,t(∆t)

F̂ (θ̂(j)
τ );

3. Volatility : the “volatility” of a thread measures how stable/volatile of the quality of the

parameter estimates obtained by the thread. It can be estimated by the sample standard deviation

of the performance for the pervious ∆t time stamps during which thread j is selected, or more

specifically

V(j, t) :=

√√√√ 1

∆t

∑
τ∈Tj,t(∆t)

(F̂ (θ̂
(j)
τ )−CP(j, t))2.

Once the statistics CP(j, t),EP(j, t),V(j, t) are computed for each thread j, an aggregated statistic

A(j, t) is calculated as

A(j, t) = κCPCP(j, t) +κEPEP(j, t) +κVV(j, t),

where κCP, κEP, κV ≥ 0 are pre-determined weight parameters that carefully balance the three aspects

we discussed above. The larger the value of A(j, t) is, the more promising the thread j is deemed

by our algorithm at time t. The thread selection/coordination rule is then designed as

Pr(select thread j at time t) =
exp{A(j, t)}∑

j′≤J exp{A(j′, t)}
,

which selects computing thread j at random with probability positively correlated with its score

A(j, t).

3.2. The GradientEstimation component

The Gradient Estimation component aims at the approximate computation of the first-order

derivative ∇θF (θ) = 1
N

∑N

i=1∇θ log p(xi;θ). A pseudo-code description of GradientEstimation

is given in Algorithm 2.



Wang, Liu: Parallel Estimating Gradient Ascent 6

Algorithm 2 The GradientEstimation component/procedure.

1: Input: solution point θ ∈Rd, probing radius δ > 0, number of probing points m∈N;

2: Output: ∇̂θF (θ)∈Rd, an estimate of ∇θF (θ).

3: Sample u1, · · · , um uniformly at random from the unit sphere {u∈Rd : ‖u‖2 = 1};

4: For each probing vector ui, i ∈ {0,1, · · · ,m}, collect noisy function evaluation yj, y
′
j at θ and

θ+ δui, respectively such that E[yj|θ,xj] = F (θ) and E[y′j|θ,xj] = F (θ+ δuj);

5: Find ∇̂θF (θ) as the least-squares estimation

∇̂θF (θ) = arg min
g∈Rd

1

m

m∑
j=1

∣∣y′j − yj
δ
−〈uj, g〉

∣∣2.

As motivated in the introduction, such first-order derivatives ∇θF (θ) cannot be directly com-

puted in closed forms. Instead, given a hypothetical parameter θ′ (possibly different from θ at which

the derivative∇θF (θ) is sought), one can compute a noisy evaluation of F (θ′) = 1
N

∑N

i=1 log p(xi;θ
′).

With many such noisy evaluations at different “probing” positions θ′, a local linear model can be

constructed via first-order Taylor expansions and least-squares estimators are employed to find an

estimator of ∇θF (θ).

The following lemma gives an upper bound on the estimation error of ∇̂θF (θ) under the assump-

tion that the gradients of the log-likelihood to be estimated, ∇F (·), is Lipschitz continuous.

Lemma 1 Suppose ∇θF (·) is L-Lipschitz continuous, meaning that ‖∇θF (θ)−∇θF (θ′)‖2 ≤L‖θ−

θ′‖2 for all θ, θ′. Suppose also that Var(yj),Var(y′j) ≤ σ2 for some σ > 0, and m ≥ 8d ln(d/δ) for

some δ ∈ (0,1/2). Then with probability at least 1− δ, the estimation error ∇̂θF (θ)−∇θF (θ) can

be decomposed as

∇̂θF (θ)−∇θF (θ) = β+ ζ,

where ‖β‖2 ≤Lδ almost surely and ζ ∈Rd is a random vector satisfying E[ζ|θ] = 0 and E[ζ>ζ|θ]≤

4d2/(mδ2).

Proof of Lemma 1. For notational simplicity denote yj = F (θ) + εj and y′j = F (θ + δuj) + ε′j

where E[εj|θ,uj] = E[ε′j|θ,uj] = 0 and Var[εj|θ,uj],Var[ε′j|θ,uj]≤ σ2. By the mean-value theorem,

there exists ũj = λδuj for some λ∈ (0,1) such that

y′j − yj = F (θ+ δuj)−F (θ) + (εj − ε′j) = 〈∇θF (θ+ ũj), δuj〉+ (ε′j − εj)

= δ〈∇θF (θ), uj〉+ δ〈∇θF (θ+ ũj)−∇θF (θ), uj〉+ (ε′j − εj).



Wang, Liu: Parallel Estimating Gradient Ascent 7

Dividing both sides of the above equality by δ, we obtain

y′j − yj
δ

= 〈∇θF (θ), uj〉+ 〈∇θF (θ+ ũj)−∇θF (θ), uj〉︸ ︷︷ ︸
:=bj

+ δ−1(ε′j − εj)︸ ︷︷ ︸
:=sj

. (2)

Next, define X = (u1;u2; · · · , um) ∈ Rm×d as an m× d matrix with each row corresponding to

a probing vector uj; z, b, s ∈ Rn as n-dimensional vectors with zj = (y′j − yj)/δ, bj = 〈∇θF (θ +

ũj)−∇θF (θ), uj〉, sj = (ε′j − εj)/δ for j = 1,2, · · · , n. The estimate ∇̂θF (θ) can then be written as

∇̂θF (θ) = (X>X)−1(X>z). In addition, z =X∇θF (θ) + b+ s thanks to Eq. (2). Subsequently,

∇̂θF (θ)−∇θF (θ) = (X>X)−1X>(b+ s) = (X>X)−1X>b+ (X>X)−1X>s. (3)

Define β := (X>X)−1X>b. By Lemma 5, we know that ‖(X>X)−1‖op ≤ 2d/m with probability

1− δ. Therefore,

‖(X>X)−1X>b‖2 ≤ ‖(X>X)−1‖op‖X‖op×
√
m‖b‖∞ ≤

2d

m
×
√
m×
√
m×‖b‖∞ ≤ 2d‖b‖∞,

with probability 1− δ, where ‖b‖∞ = maxj |bj|. Because ∇θF (θ) is L-Lipschitz continuous, |bj| can

be upper bounded by

|bj|=
∣∣〈∇θF (θ+ ũj)−∇θF (θ), uj〉

∣∣≤ ‖∇θF (θ+ ũj)−∇θF (θ)‖2×‖uj‖2

≤L×‖ũj‖2×‖uj‖2 ≤Lδ,

where the last inequality holds because ‖ũj‖2 = λδ‖uj‖2 ≤ δ since ‖uj‖2 = 1 and 0<λ< 1. Subse-

quently, we have with probability 1 that

‖β‖2 = ‖(X>X)−1X>b‖2 ≤ 2Ldδ. (4)

We next establish a co-variance upper bound on ζ = (X>X)−1X>s. It should be noted that

each sj = (εj − ε′j)/δ is a centered, independent random variable with variance upper bounded by

E[s2
j |θ]≤ 2/δ2. Subsequently, we have

E[ζ>ζ|θ] =E[s>X(X>X)−2X>s|θ] =
2

δ2
tr
[
X(X>X)−2X>

]
≤ 2

δ2
× d× 2d

m
=

4d2

mδ2
. (5)

Combining Eqs. (4,5) we complete the proof of Lemma 1.

3.3. The ThreadStopping component

In the ThreadStopping component, we discuss rules for stopping a computing thread j if it

is deemed to be not promising, either unable or too time-expensive to converge to a good-quality

parameter estimate. While the proposed rules are heuristics in nature, we prove under certain local

concavity assumptions that these proposed stopping rules are conservative in the sense that, with

high probability, they will not remove a promising computing thread by mistake.

We describe the two major stopping rules considered in the ThreadStopping component,

which can be categorized at a higher level as “first-order” and “second-order” rules.



Wang, Liu: Parallel Estimating Gradient Ascent 8

3.3.1. First-order stopping rule Suppose thread j is currently at a parameter estimate

θj, with gradient estimate ∇̂F (θ(j)
τ ) ≈ ∇F (θ(j)

τ ). Suppose also that an estimate F̂ (θ(j)
τ ) ≈ F (θ(j)

τ )

is obtained by simply averaging all observations of yj in Algorithm 2. The thread j should be

terminated, then, if there exists another thread j′ 6= j such that

Stopping rule 1: F̂ (θ(j)
τ ) +D×‖∇̂F (θ(j)

τ )‖2 ≤ F̂ (θ(j′)
τ ).

Here, D> 0 is a tuning parameter for the stopping rule and also the optimization algorithm, with

larger D values indicating more aggressive (and hence less “safe”) stopping rule for computing

threads.

Intuitively, the stopping rule obtains an “over-estimate” of the likelihood function F on the

solution thread j can potentially converge to, on the left-hand side of the stopping rule. The

intuition is that if F̂ (θ(j)
τ ) is already small, it means that the function will change very slowly

in a neighborhood of θ(j)
τ and therefore the estimating gradient ascent procedure is unlikely to

advance/improve the likelihood objective significantly in thread j.

Below we state a local concavity condition and shows that, with the condition held and the

estimates F̂ , ∇̂F being accurate, the proposed stopping rule is “safe” in the sense that it will

only remove computing threads impossible to obtain better parameter estimates. This is further

accomplished by showing that, F̂ (θ(j)
τ ) +D×‖∇̂F (θ(j)

τ )‖2, under the considered circumstances, is

an upper bound on how large F (θ∗j ) could potentially be.

Condition 1 (Local concavity) For every computing thread j let θ∗j be the parameter the thread

converges to. There exists a convex neighborhood Uj containing θ∗j with diameter supx,x′∈Uj ‖x−

x′‖2 ≤D, such that F is concave in Uj, meaning that

F (λx+ (1−λ)x′)≥ λF (x) + (1−λ)F (x′), ∀x,x′ ∈Uj, λ∈ [0,1].

Lemma 2 Suppose F is twice differentiable, condition 1 holds and θ(j)
τ ∈ Uj. Then F (θ∗j ) ≤

F (θ(j)
τ ) +D‖∇F (θ(j)

τ )‖2.

Proof of Lemma 2. Because F is twice differentiable and locally concave on Uj, we know that

∇2F (θ)� 0 for all θ ∈ Uj. Using second-order Taylor expansion of F (θ∗j ) at θ(j)
τ with Lagrangian

remainders, it holds that

F (θ∗j ) = F (θ(j)
τ ) + 〈∇F (θ(j)

τ ), θ∗j − θ(j)
τ 〉+

1

2
(θ∗j − θ(j)

τ )>∇2F (θ̃)(θ∗j − θ̂(j)
τ ),



Wang, Liu: Parallel Estimating Gradient Ascent 9

where θ̃= λθ∗j +(1−λ)θ(j)
τ for some λ∈ (0,1), and θ̃ ∈Uj since Uj is a convex domain. This implies

that ∇2F (θ̃)� 0 and therefore (θ∗j − θ(j)
τ )>∇2F (θ̃)(θ∗j − θ̂(j)

τ )≤ 0. Subsequently,

F (θ∗j )≤ F (θ(j)
τ ) + ‖∇F (θ(j)

τ )‖2×‖θ∗j − θ(j)
τ ‖2 ≤ F (θ(j)

τ ) +D‖∇F (θ(j)
τ )‖2,

where the first inequality is by the Cauchy-Schwarz inequality and the second inequality holds

because ‖θ∗j − θ(j)
τ ‖2 ≤D.

3.3.2. Second-order stopping rule The first stopping rule we developed in the previous

section could be strengthened if the likelihood objective F has finer properties locally around θ∗j .

In this section we consider a second-order stopping rule, which stops a particular thread j if there

exists another thread j′ 6= j such that

Stopping rule 2: F̂ (θ(j)
τ ) +

1

2α
×‖∇̂F (θ(j)

τ )‖22 ≤ F̂ (θ(j′)
τ ).

Comparing the stopping rule 2 with stopping rule 1, the major difference is the squared `2-norm

of the estimated gradients of F at θ̂(j)
τ . Inuitively speaking, this rule is more “aggressive” than

stopping rule 1, since when thread j approaches θ∗j it converges to, the gradients would be close to

zero and therefore ‖θ̂(j)
τ ‖22 would be much smaller than ‖θ̂(j)

τ ‖2.

Below we state a local strong-concavity condition, which is stronger than Condition 1 for stopping

rule 1. We then show, in Lemma 3 below, that under the stronger condition a “clearner” version

of stopping rule 2 will not remove computing threads that are still relevant.

Condition 2 (local strong-concavity) For every computing thread j let θ∗j be the parame-

ter the thread converges to. There exists a convex neighborhood Uj containing θ∗j with diameter

supx,x′∈Uj ‖x−x
′‖2 ≤D, such that F is α-strongly concave in Uj, meaning that

∇2F (θ)�−αI, ∀θ ∈Uj.

To see why Condition 2 is strong than Condition 1, recall that a twice-differentiable function f is

concave on U if ∇2f(x)� 0 for all x∈U . This is weaker than Condition 2 with some α> 0.

Lemma 3 Suppose F is twice differentiable, condition 2 holds and θ(j)
τ ∈ Uj. Then F (θ∗j ) ≤

F (θ(j)
τ ) + 1

2α
‖∇F (θ(j)

τ )‖22.



Wang, Liu: Parallel Estimating Gradient Ascent 10

Proof of Lemma 3. Using second-order Taylor expansion of F (θ∗j ) at θ(j)
τ with Lagrangian

remainders, it holds that

F (θ∗j ) = F (θ(j)
τ ) + 〈∇F (θ(j)

τ ), θ∗j − θ(j)
τ 〉+

1

2
(θ∗j − θ(j)

τ )>∇2F (θ̃)(θ∗j − θ̂(j)
τ ),

where θ̃ = λθ∗j + (1− λ)θ(j)
τ for some λ ∈ (0,1), and θ̃ ∈ Uj since Uj is a convex domain. Because

∇2F (θ̃)�−αI and |∇F (θ(j)
τ ), θ∗j −θ(j)

τ )| ≤ ‖∇F (θ(j)
τ )‖2×‖θ∗j −θ(j)

τ ‖2 thanks to the Cauchy-Schwarz

inequality, we conclude that

F (θ∗j )≤ F (θ(j)
τ ) + ‖∇F (θ(j)

τ )‖2×‖θ∗j − θ(j)
τ ‖2−

α

2
‖θ∗j − θ(j)

τ ‖22.

Completing the squares, we obtain

F (θ∗j )−F (θ(j)
τ )≤−α

2
‖θ∗j − θ(j)

τ ‖22 + ‖∇F (θ(j)
τ )‖2×‖θ∗j − θ(j)

τ ‖2

=−α
2

(
‖θ∗j − θ(j)

τ ‖2−
‖∇F (θ(j)

τ )‖2
α

)2

+
‖∇F (θ(j)

τ )‖22
2α

≤ ‖∇F (θ(j)
τ )‖22

2α
.

Re-arranging the terms we have F (θ∗j )−F (θ(j)
τ )≤ ‖∇F (θ

(j)
τ )‖22

2α
, which is to be demonstrated.

4. Numerical results on synthetic data

In this section we report numerical results of our proposed algorithm on the optimization task of a

synthetic function. We consider the problem of maximizing a 5-dimensional non-concave function

with multiple local maxima and saddle points. To construct such a function, we use the probability-

density function of a Gaussian Mixture Model (GMM). More specifically, we consider the following

objective function

f(x) =
5∑
k=1

1√
2πσ2

k

exp

{
−‖x−µk‖

2
2

2σ2
k

}
,

with µk = ek ∈ R5 being the coordinate basis functions, σk = 1.0 for k ∈ {1,2,3,4} and σk = 0.5

for k = 0.5. The construction of the objective function f ensures that it has at least five local

minima with similar values, with the local minima tilting towards the last component k= 5 being

comparably higher due to its smaller variance. Hence, if an (estimating) gradient descent algorithm

is initialized near the first for components it will be attracted to the first four local maxima first

before escaping and turning towards the final global maxima near the last component.

In Figure 1 we report the convergence of our proposed algorithm with five threads, initialized

to solutions close to each of the component centers µk defined in the objective function. Both



Wang, Liu: Parallel Estimating Gradient Ascent 11

0 20 40 60 80 100

No. of iterations

0.4

0.6

0.8

1

1.2

1.4

1.6
o

b
je

c
ti
v
e

 v
a

lu
e

s
Without thread coordination or stopping

thread 1

thread 2

thread 3

thread 4

thread 5

hypothetical single-thread

0 20 40 60 80 100

No. of iterations

0.4

0.6

0.8

1

1.2

1.4

1.6

o
b

je
c
ti
v
e

 v
a

lu
e

s

With thread cooridnation and stopping

thread 1

thread 2

thread 3

thread 4

thread 5

hypothetical single-thread

Figure 1 Convergence of our proposed algorithm with five threads. Details of the figures and the algorithms

being implemented are given in the main text.

algorithms are run for a total of T = 100 gradient evaluations (total number of time periods across

all 5 threads), with each gradient evaluation taking m= 20 random samples with δ = 0.1 probing

radius. In the left panel of Figure 1, both the thread coordination and thread stopping components

are disabled (meaning that each time we select a thread uniformly at random, and no thread

is terminated early); in the right panel of Figure 1, the thread coordination (thread sampling)

component is activated with parameters κCP = κEP = κV = 1 with history window ∆t = 100, and the

thread stopping component is activated with rule F̂ (θ(j)
τ ) + 0.5‖θ(j)

τ ‖2 ≤ F̂ (θ(j′)
τ ). In both plots of

Figure 1, we also report in the dashed blue curve the objective function values of a hypothetical

single-thread estimating gradient descent method, initialized at a point close to a sub-optimal

component center µk, k < 5.

From Figure 1, it is clear that our proposed algorithm with multiple threads (more precisely 5

threads in this experiment) outperform its single-thread version significantly, with the same number

of function value/gradient evaluations (T = 100). Furthermore, the right panel of Figure 1 shows

that our thread coordination and thread stopping components could quickly identify sub-optimal

threads (those marked with red, yellow, black and magenta curves) and stop them, while the same

multi-thread optimization algorithm without thread coordination or stopping is forced to almost

evenly distribute the computation among the five threads, wasting computation on unpromising

threads and thereby slowing the overall progress of the algorithm.

We also report the global (overall) convergence of the proposed algorithms in Figure 2. For the

single-thread curve (the dashed black curve) Figure 2 coincides with Figure 1. For the other two

curves corresponding to five threads, we report the best objective value the algorithm attains after

a total of t= 1,2, · · · ,100 gradient/function value evaluations are made. This gives the reader a



Wang, Liu: Parallel Estimating Gradient Ascent 12

0 20 40 60 80 100

No. of iterations

0.4

0.6

0.8

1

1.2

1.4

1.6

o
b

je
c
ti
v
e

 v
a

lu
e

s

Global convergence

single-thread

multi-thread, no coordination/stopping

multi-thread, with coordination/stopping

Figure 2 Global (overall) convergence of the proposed algorithm for single-thread, five-thread without

coordination/stopping and five-thread with coordination and stopping. Further details are given in the main text.

more intuitive picture of the efficiency of the proposed optimization algorithms. As we can see,

the algorithm with both thread coordination and thread stopping components activated (the solid

blue curve) converges to higher objective values much faster than the same algorithm with the

same number of threads, but with neither thread coordination nor thread stopping rules (the

solid red curve). This is because with thread coordination (sampling the more promising threads

more frequently) and thread stopping (terminating sub-optimal threads early to not waste more

computation time on these threads), the algorithm allows more samples/computation to be spent

on the promising thread so that the convergence speed of the algorithm is much faster.

5. Numerical results on airline pricing data

In this section, we apply our proposed optimization method to a real-world airline pricing dataset

and compare its performance with benchmark heuristics optimization algorithms, including the

genetic algorithm and the pattern search algorithm. Our proposed algorithm is implemented in

C++, while both benchmark methods are implemented in Matlab.

5.1. Background: hidden city ticketing

Modern airlines operator primarily two types of flight networks: the hub-and-spoke network, which

designated a handful of airports as hubs and route most of the flights from all airports to major

hubs; and the fully-connected network, which operates direct flight in a point-to-point manner.

The hub-and-spoke network is adopted by major airlines such as the United airlines and the Delta



Wang, Liu: Parallel Estimating Gradient Ascent 13

Figure 3 Illustration of the fully-connected (FC) and hub-and-spoke (HS) structures among three airports.

airlines, while the fully-connected approach is mostly used by smaller, low-cost carriers such as

Southwest and JetBlue.

In hub-and-spoke network, many flights between non-hub airports are carried out using con-

necting flights. For example, the flight from Pittsburgh to Boston could be direct/non-stop, but

most likely it needs connection at a New York airport. Naturally, connecting flights are priced

(sometimes significantly) lower compared to direct flights due to the additional connection and

extended travel time. In some extreme cases, the price of the indirect flight (e.g., Pittsburgh to

Boston connecting via New York) might be even lower than the first-leg of the flight (Pittsburgh

to New York non-stop). This creates the possibility of hidden-city ticketing, a practice that could

significantly reduce the revenue/profits of the airlines.

More specifically, consider a traveller who wishes to travel from airport A to airport B. The

practice of hidden-city ticketing is defined as the same traveller purchasing a ticket from airport A

to airport C, connecting at airport B. The traveller would then proceed with only the first leg of

her purchased ticket, essentially traveling from A to B on a non-stop flight. Clearly, such hidden-

ticketing behavior is only practiced if the traveller knows about the practice, and furthermore the

price of a flight ticket from A to C connecting at B is strictly lower than the price of a non-stop

ticket directly from A to B.

5.2. Model formulation and maximum likelihood estimation

We collected commercial flights operated among the 133 busiest commercial service airports in the

United States (identified by the FAA) with 96.34% of total passenger enplanements, 16,142 routes

and 2,822,086 itineries.

For every three distinct airport tuples (A,B,C), with flights connecting (A,B) and (A,C),

the flight network can be categorized as either fully-connected (FC), if there are non-stop flights

between (A,C), or hub-and-spoke (HS) if there are no direct flights between A and C. Figure 3



Wang, Liu: Parallel Estimating Gradient Ascent 14

Figure 4 The Stackelberg game description of the airlines’ network choices and travelers’ riding behaviors.

gives a graphical illustration of the FC and/or HS network structures among the airports A,B and

C. We use dAB, dBC , dAC to denote the distances between pairs of airports, and pAB, pBC , pAC for

ticket prices of direct flights among the airports. Additionally, we use pABC for the ticket price of

the indirect flight from A to C connecting at B.

We make the following assumptions on the supply side (the airlines):

1. There is only one airline serving the three cities, thus the firm charges monopoly airfares;

2. Aircrafts are assumed to have an unlimited capacity, thus there is one flight on each route.

C2 denote the airline’s cost per mile on any route j;

3. Direct flight has a quality of qh per mile and indirect flight has a quality of ql per mile, with

0< ql < qh < 1.

We also assume the following on the demand side (the travelers):

1. Each individual i has a time preference parameter of λi, obtaining utility C1e
λiqd− p from

consuming a good of quality q, and 0 if he/she does not fly;

2. On each route j, the distribution of consumers’ time preferences λij ∼N (θj, σ
2
1);

3. For passengers flying from A to B, the fraction of passengers being aware of hidden city

opportunity is δ and the fraction of uninformed passengers is 1− δ;

4. When hidden city opportunity exists (i.e., pAB > pABC), informed passengers will pay pABC

instead, while uninformed passengers will still pay pAB;

5. Amount of passengers on each route j are normalized to 1.

Based on the above assumptions, we use a Stackelberg game to characterize the airlines’ network

choices and the travelers’ riding behaviors, as shown in Figure 4.

We next formulate the maximum likelihood estimation question that we aim to solve. The

problem is centered on the parameter of interest δ, representing the portion of travelers who



Wang, Liu: Parallel Estimating Gradient Ascent 15

are aware and would be willing to exploit the benefits of hidden city ticketing. Other nuisance

parameters also needed to be estimated include C1 (the travelers’ average utility), C2 (the airlines’

average cost), σ1 (standard deviation of λij), σ2 (standard deviation of θj ∼N (µj, σ
2
2)), qh and ql

(utility multipliers for different types of travelers). Mathematically, we use

ζ = (δ,C1,C2, σ1, σ2, qh, ql)∈R7

to denote a vector of parameter values.

For each airports tuple (Ai,Bi,Ci) in the collected data such that there are at least one flights

between (Ai,Bi) and (Bi,Ci), respectively, we use

yi ∈ {0,1}

to denote the airline’s actual choice of FC or HS structures (i.e., yi = 1 if there are direct flights

between (Ai,Ci) and yi = 0 otherwise). The accessible data for airport tuple (Ai,Bi,Ci) are repre-

sented as

xi = (pAB, pBC , pAC , pABC , dAB, dBC , dAC , µB, µC)∈R9,

where pAB, pBC , pAC , pABC are flight ticket prices, dAB, dBC , dAC are distances between airports,

and µB, µC are expected values of θB, θC which are obtained via analyzing the typical flows of

flights/passengers for each of the 133 airports in the data set.

With θB ∼ N (µB, σ
2
2) and θC ∼ N (µC , σ

2
2) realized, the expected profit for the airline can be

computed as follows. Let Φ(z;µ,σ2) =
∫ z

0
1√

2πσ2
exp{− (t−µ)2

2σ2
}dt be the cumulative density function

(CDF) of N (µ,σ2). First, in the case of Fully-Connected (FC) network, the expected profit is

ΠFC = ΠAB + ΠBC + ΠAC where ΠXY = pXY

[
1−Φ

(
ln

(
pXY

C1qhdXY

)
;θY , σ

2
1

)]
−C2dXY .

In the case of Hub-and-Spoke (HS) network, there are two cases. The first case is pAB < pABC , in

which there is no hidden-city ticketing opportunities. The airline’s profit is then expressed as

ΠHS = ΠAB + ΠBC +Rl
ABC where Rl

ABC = pABC

[
1−Φ

(
ln

(
pABC

C1ql(dAB + dAC)

)
;θC , σ

2
1

)]
.

Note that, because the direct flight between A and C is no longer operated in a hub-and-spoke

network, and therefore Rl
ABC is a pure profiting term.

Finally, in the case of pAB ≥ pABC , there is potential profit loss due to hidden-city ticketing. The

airline’s profit is

ΠHS = (1− δ)ΠAB + ΠBC +Rl
ABC + δRh

ABC where Rh
ABC = pABC

[
1−Φ

(
ln

(
pABC

C1qhdAB

)
;θB, σ

2
1

)]
,



Wang, Liu: Parallel Estimating Gradient Ascent 16

Table 1 Results for our proposed algorithm on the airline pricing data, with D= 1/2α∈ {1.0,0.5,0.3}. A ×

means that the particular thread is not active at the end of the optimization.

D= 1/2α log. likeli. δ C1 C2 σ1 σ2 qh ql running time (s)

Thread #1 1.0 -0.69 0.01 6.33 0.76 0.69 0.82 0.53 0.10 108.9

0.5 -0.69 0.02 6.34 0.78 0.72 0.85 0.52 0.10 107.7

0.3 -0.68 0.02 6.33 0.78 0.72 0.87 0.52 0.10 108.3

Thread #2 1.0 -0.73 0.49 11.8 0.95 0.35 0.86 0.54 0.12 108.9

0.5 -0.71 0.50 11.8 0.94 0.35 0.93 0.52 0.12 107.7

0.3 × × × × × × × × ×
Thread #3 1.0 -0.71 0.06 10.3 0.74 0.37 0.96 0.49 0.10 108.9

0.5 -0.70 0.07 10.3 0.74 0.39 0.99 0.47 0.11 107.7

0.3 -0.69 0.07 10.3 0.76 0.43 1.0 0.47 0.11 108.3

Thread #4 1.0 -0.68 0.50 10.9 0.95 0.72 0.83 0.34 0.10 108.9

0.5 -0.69 0.49 10.9 0.96 0.72 0.82 0.33 0.12 107.7

0.3 -0.67 0.48 10.9 0.91 0.73 0.86 0.33 0.12 108.3

Thread #5 1.0 -0.71 0.43 12.0 0.96 0.59 0.77 0.36 0.11 108.9

0.5 × × × × × × × × ×
0.3 × × × × × × × × ×

where δ ∈ (0,1) is the parameter of interest corresponding to the portion of travelers engaged in

the hidden-city ticketing practice.

Given tuple xi and the observed airline’s network choice yi ∈ {0,1}, the log-likelihood of yi

conditioned on xi and parameter ζ can be written as

logP (yi|xi; ζ) = yi log Pr
θBi

,θCi

[
ΠFC >ΠHS

]
+ (1− yi) log Pr

θBi
,θCi

[
ΠHS ≥ΠFC

]
. (6)

The maximum-likelihood estimation problem is then formulated as

arg max
ζ

1

N

N∑
i=1

logP (yi|xi;θ), (7)

where N is the total number of airport tuples (A,B,C) available in the data collected.

5.3. Results

Before presenting the computational results, we first mention some important implementation

details. First, because the distances dXY are measure in miles and could vary drastically, we adopt

a re-normalization transform dXY 7→
√
dXY to alleviate the scales of the distances. We also note

that the log-likelihood in Eq. (6) cannot be evaluated directly because the PrθBi ,θCi

[
ΠFC >ΠHS

]
terms do not admit easy closed-form expression. Instead, we use Monte-Carlo sampling with MMC

samples to approximately compute the log-likelihood. Finally, because the collected data consist of



Wang, Liu: Parallel Estimating Gradient Ascent 17

Table 2 Results for the genetic algorithm (ga) and the pattern search algorithm (patternsearch). Each

algorithm terminates only when the designated time limit is reached. MMB =MMC are the mini-batch sizes and

the number of Monte-Carlo samples, respectively.

MMB MMC log. likeli δ C1 C2 σ1 σ2 qh ql running time (s)

Genetic algorithm 200 200 -0.73 0.30 5.03 0.68 0.61 0.86 0.85 0.27 100

200 200 -0.75 0.28 5.36 0.73 0.58 0.78 0.82 0.28 300

500 500 -0.69 0.31 3.66 0.70 0.81 0.95 0.93 0.21 600

Pattern search 200 200 -0.82 0.13 7.5 0.10 0.10 0.85 1.0 0.10 100

200 200 -1.01 0.0 8.0 0.10 0.10 0.60 1.0 0.10 300

500 500 -0.76 0.35 0.34 0.35 0.51 0.76 0.58 0.16 600

many airport tuples (i.e., N > 105), we use a “mini-batch” approach when evaluating the objective

function in Eq. (7). More specifically, we randomly sample MMB�N airport tuples and use the

average log-likelihood on the randomly sampled mini-batch data to approximate the log-likelihood

of the objective function on the entire data set.

We also impose the following constraints on each of the parameters in ζ to be estimated: δ ∈

(0,1/2], C1 ∈ [1,20], C2 ∈ [0.1,1], σ1 ∈ [0.1,1], σ2 ∈ [0.1,1] and 0.1≤ ql ≤ qh ≤ 1. These constraints

are imposed to ensure the values of the unknown parameters are practically feasible and reasonable.

We first present computational results for our proposed parallel stochastic gradient ascent algo-

rithm. Algorithmic parameters are set as κCP = κEP = κV = 1 for the ThreadCoordination com-

ponent, m= 20, δ= 0.05 for the GradientEstimation component, and D= 1/2α∈ {1.0,0.5,0.3}

for the ThreadStopping component. The algorithm is run for T = 200 iterations, 5 initial threads

with random initializations, and with the log-likelihood of the final solution of each active threads

being reported in Tables 1.

As we can see from Table 1, at the end of the optimization there are 5 active threads if D =

1/2α = 1.0, 4 active threads if D = 1/2α = 0.5 and 3 active threads if D = 1/2α = 0.3. This is

intuitive because smaller D = 1/2α values indicate a more aggressive thread elimination policy,

thereby leading to fewer active threads. In the core three threads (Threads #1, 3, 4) the log-

likelihood is consistently below −0.7, indicating likely scenarios in the real world. Our algorithm

takes roughly 100 seconds to complete an optimization.

We next compare the results obtained by our proposed algorithm with two baseline meth-

ods widely used in global optimization: the genetic algorithm and the pattern search algorithm.

Both algorithms have been implemented in Matlab in standard packages, via the ga and the

patternsearch routine. The results for both algorithms are reported in Table 2, with their corre-

sponding running times. Note that the running times are set prior to each run, and the optimization



Wang, Liu: Parallel Estimating Gradient Ascent 18

algorithms simply terminate once the time budgets are reached. Table 2 shows that, both the

genetic algorithm and the pattern search algorithm take much longer time (around or even more

than 10 minutes) to converge to less optimal solutions compared to the ones found by our pro-

posed algorithm in 100 seconds. This demonstrates the effectiveness and efficiency of our proposed

approach.

6. Conclusion

In this paper, we propose a general framework of optimizing functions with noisy function eval-

uations. The proposed framework is based on running multiple threads of stochastic estimating

gradient ascent algorithms in parallel, and to carefully coordinate the different computing threads.

Theoretical analysis and justifications are given for the stopping rules used in the proposed method,

and numerical results on both synthetic data and a real airline industry data set are provided to

corroborate the effectiveness and efficiency of our proposed methods.

Appendix: additional lemmas and proofs

The following lemma is a simplified version of Matrix Chernoff inequality, cited from (Tropp et al.

2015, Eq. (5.1.5)).

Lemma 4 Let X1, · · · ,Xm be a sequence of d × d i.i.d. positive semi-definite (PSD) matrices

satisfying ‖Xk‖op ≤L almost surely for all k. Then for any t∈ [0,1),

Pr

[
λmin(

∑
j

Xj)≤ tµmin

]
≤ d exp

{
−(1− t)2µmin

2L

}
,

where λmin(·) is the smallest eigenvalue of a PSD matrix and µmin = λmin(
∑

j EXj).

The next lemma upper bounds the operator norm of an inverse covariance matrix of random

vectors uniformly distributed on a unit sphere.

Lemma 5 Let u1, u2, · · · , um be i.i.d. d-dimensional vectors uniformly distributed on the unit

sphere {x∈Rd : ‖x‖2 = 1}. Suppose also that m≥ 8d ln(d/δ) for some δ ∈ (0,1/2]. Then with prob-

ability at least 1− δ, ‖(
∑

j uju
>
j )−1‖op ≤ 2d/m.

Proof of Lemma 5. Denote Λ := E[u1u
>
1 ] ∈ Rd×d. Because the distribution of u1 is spherical

invariant, we immediately have Λjk = 0 for all j 6= k and Λjj ≡ λ for all j = 1,2, · · · , d. Additionally,

since E[u>1 u1] = 1 we have that tr(Λ) = dλ= 1. This implies Λ = 1
d
Id×d.



Wang, Liu: Parallel Estimating Gradient Ascent 19

Next, invoke Lemma 4 with L= 1, µmin =m/d and t= 1/2. We then have

Pr

[
λmin(

∑
j

uju
>
j )≤ m

2d

]
≤ d exp

{
−m

8d

}
.

Under the condition that m ≥ 8d ln(d/δ), the right-hand side of the above inequality is upper

bounded by δ. Lemma 5 is thus proved.

References

Agarwal, A., Dekel, O., & Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-

point bandit feedback. In Proceedings of the Conference on Learning Theory (COLT), (pp. 28–40).

Agarwal, A., Luo, H., Neyshabur, B., & Schapire, R. E. (2016). Corralling a band of bandit algorithms.

arXiv preprint arXiv:1612.06246 .

Bandeira, A. S., Scheinberg, K., & Vicente, L. N. (2014). Convergence of trust-region methods based on

probabilistic models. SIAM Journal on Optimization, 24 (3), 1238–1264.

Besbes, O., Gur, Y., & Zeevi, A. (2015). Non-stationary stochastic optimization. Operations Research, 63 (5),

1227–1244.

Billups, S. C., Larson, J., & Graf, P. (2013). Derivative-free optimization of expensive functions with com-

putational error using weighted regression. SIAM Journal on Optimization, 23 (1), 27–53.

Blum, J. R. (1954). Multidimensional stochastic approximation methods. The Annals of Mathematical

Statistics, (pp. 737–744).

Bubeck, S., Munos, R., Stoltz, G., & Szepesvári, C. (2011). X-armed bandits. Journal of Machine Learning

Research, 12 (May), 1655–1695.

Bubeck, S., Stoltz, G., Szepesvári, C., & Munos, R. (2009). Online optimization in x-armed bandits. In

Advances in Neural Information Processing Systems, (pp. 201–208).

Chen, R., Menickelly, M., & Scheinberg, K. (2018). Stochastic optimization using a trust-region method and

random models. Mathematical Programming , 169 (2), 447–487.

Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free optimization, vol. 8.

SIAM.

Flaxman, A. D., Kalai, A. T., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in

the bandit setting: gradient descent without a gradient. In Proceedings of the annual ACM-SIAM

symposium on Discrete algorithms (SODA), (pp. 385–394).

Ghadimi, S., & Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic program-

ming. SIAM Journal on Optimization, 23 (4), 2341–2368.

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The

Annals of Mathematical Statistics, 23 (3), 462–466.



Wang, Liu: Parallel Estimating Gradient Ascent 20

Koza, J. R. (1997). Genetic programming.

Lewis, R. M., & Torczon, V. (1999). Pattern search algorithms for bound constrained minimization. SIAM

Journal on Optimization, 9 (4), 1082–1099.

Lykouris, T., Mirrokni, V., & Paes Leme, R. (2018). Stochastic bandits robust to adversarial corruptions.

In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing , (pp. 114–122).

ACM.

Nemirovsky, A. S., & Yudin, D. B. (1983). Problem complexity and method efficiency in optimization. SIAM.

Powell, M. J. (2003). On trust region methods for unconstrained minimization without derivatives. Mathe-

matical Programming , 97 (3), 605–623.

Shamir, O. (2017). An optimal algorithm for bandit and zero-order convex optimization with two-point

feedback. Journal of Machine Learning Research, 18 (52), 1–11.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning

algorithms. In Advances in neural information processing systems, (pp. 2951–2959).

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approx-

imation. IEEE Transactions on Automatic Control , 37 (3), 332–341.

Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7 (1),

1–25.

Tropp, J. A., et al. (2015). An introduction to matrix concentration inequalities. Foundations and Trends R©

in Machine Learning , 8 (1-2), 1–230.

Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and

applications, (pp. 7–15). Springer.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing , 4 (2), 65–85.


